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ABSTRACT 

Let R be a bounded Noetherian Prime ring. The Asano-Michler theorem 
shows that R is a bounded Dedekind ring if every prime ideal of R is invertible. 
We provide a simple proof of the Asano-Michler theorem, and we suggest 
some possible generalizations. We also prove that if the proper residue rings 
of R are QF-rings then R is a bounded Dedekind ring, and generalize this result 
to LD-rings. 

The purpose of this paper  is to obtain several types of  sufficient conditions for 

a ring to be an hereditary ring, as well as to develop some techniques of  getting 

new projective ideals f rom a given set of  projective ideals. Among others there 

results a p roof  for a theorem of Asano-Michler(Theorem 14) and generalizations 

of  it (Theorems 8-9) which does not use localization I-8]. The technique being 

one of the purposes in this paper,  the reader will notice that  sometimes we provide 

different proofs for a given result. 

Specializing to the commutative case one recovers many  known results (e.g 

[-3], [-6] and [,11]) however the methods used here suggests some non standard 

proofs, the main difference seems to lie in that we do not use localizations. 

A ring R is presumed to have an identity. All modules are unitary left modules 

and all ideals are left ideals unless otherwise specified. 

An LD-ring is a left bounded ring of finite left Goldie dimension, all of  whose 

proper  residue rings are left Artinian principal ideal rings. 

For  the definition and properties of  LD-rings we refer to [,12], and for those of  

Goldie rings to [-5] and [-9]. 

Our first step is to obtain sufficient conditions for an ideal to be a projective 

left module. 
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LEMMA 1. Let M 1 , . . . ,M  t be ideals in the ring R such that: 

(1) R / M  i is a simple artinian ring for  i = 1, . . . , t  

(2) M i is a f ini tely generated projective left module for  i = 1, ..., t. 

Let I be a left ideal that contains a product of ideals, A s ... A, ,  such that for 

every integer i, 1 <_ i <- n, there exists an integer j ,  1 < j < t so that Ai = M~. 

Then I is a left projective module. 

PROOF. Obviously R / A I ' "  A ,  is a left artinian ring. Since I = A1 ... A, there 

exists an ideal J in R such that J = I ,  and J / I  is a simple module. But (A1 ... A,) 

(J / I )  = 0 ,  therefore J / I  is a simple R / A ~ . . . A ,  module. Consequently there 

exists an ideal Mk, 1 <-- k < t, such that Mk (J /I) = O. 

In particular, J / I  is isomorphic to a left direct summand of R[Mk.  As M k is 

assumed to be a left projective module, then 1.p.dim R / M k  < 1, and consequently 

1.p.dim J /I < 1. 

Fixing B = A1 "" A,, let I be a maximal ideal containing B, such that I is not 

a left projective module. I f  no such I exists we are done. Let d be a left ideal that  

contains I, and such that J / I  is a simple module. From the maximality of  I it 

follows that J is a left projective module, and from 1.p.dim J / I  < 1 it now follows 

that I is a left projective module which is a contradiction. This completes the proof. 

REMARK. The assumption that M~ are finitely generated left modules can be 

replaced by R ]A~ ... A ,  being a left artinian ring. However under the assumption 

that  M, are finitely generated as left modules it follows that I is a finitely generated 

left module. 

An immediate consequence is: 

COROLLARY 2. A commutative ring, with Artinian (proper) residue rings, and 

max imal  projective ideals is a Dedekind domain. 

A different type of condition that  assures us of  the projeetivity of  an ideal is: 

LEMMA 3". Let M be a max imal  ideal in a ring R so that M = Rx  + M 2, 

x being an element of  R so that: 

(i) Rx  is a projective left module. 

(ii) R x  ~ A M  for  some ideal A in R that is not contained in M,  and for  

which A M  = MA.  

I f  R / M  is an Artinian ring, then M is a left projective module. 

* Professor D. Zelinsky pointed out that the same result follows, using a similar proof, 
in case the existence of x is replaced by the existence of ideals A and/so that AnM~ I c  M, where 
l is a left projective module. 
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PROOF. Immediate consequences from the assumptions are: Rx ~ A, M + A = R, 

MA -- AM = M n A, and R / M A  ~_ R / M  • R/A. Therefore R/Rx = (A + Rx) 

/ Rx @ (M + Rx)/Rx and (A + Rx)/Rx # O. Since M[(A + Rx)/Rx] = 0 and R / M  is 

anArtinian simple ring, there exists a simple left R-module S so that (A + Rx) /Rx 

(and R/M)  is isomorphic to a direct sum of finitely many copies of S. As Rx is a 

projective left module we have 1.p.dim R/Rx<= 1, consequently 1.p.dim 

(A + Rx) /Rx __< 1. This implies 1.p.dim S =< 1, whence 1.p.dim R / M  < 1 and thus 

M is a left projective module. 

Remark that condition (i) holds if x is a regular element in R. 

We next aim at some sufficient conditions on a ring R to be an hereditary ring. 

Most of the results apply to bounded orders in a simple Artinian ring. We start 

with a ring that is not necessarily an order in a simple Artinian ring. 

PROPOSITION 4. A left bounded ring, all of whose residue rings are left 

Artinian rings, and all of whose maximal two sided ideals are projective left 

modules, is a left hereditary ring. 

PROOF. Let I # 0 be any left ideal. I f  I is not an essential left ideal there exists 

a left ideal J so that I @ J is an essential left ideal in R. Let K # 0 be a two sided 

ideal that is contained in I @ J. Since R / K  is a left Artinian ring, we may assume 

that I @ J contains a finite product of maximal ideals of R. The conclusion is a 

consequence of Lemma 1. 

Remark that such a ring need not be Noetherian, e.g. there exist semiprimary 

non Noetherian rings satisfying the assumptions of Proposition 4. 

A similar result concerning orders in simple Artinian rings is: 

PROPOSITION 5. Let R be a left bounded prime ring such that R /J is a QF-ring 

whenever J is a non-zero two-sided ideal. Let N , ~ I M " =  O for every maximal 

two-sided ideal M. I f  for every regular element x in R there exists a non-zero 

two sided ideal K so that K c Rx then R is a left Noetherian, left hereditary ring. 

PROOF. If  R is an Artinian ring, it is necessarily a simple ring and we:are done. 

Hence we may assume that R is not an Artinian ring. 

We aim first at proving that in this case R is a left hereditary ring. 

Let L # 0 be any left ideal, then L is a direct summand of an essential left ideal 

I. Let J be a non-zero two sided ideal such that I ~ J. Then R/Jis a QF-ring. Con- 

sequently I contains a finite product of maximal two-sided ideals, and the multipli- 

cation of maximalideals is commutative. By Lemma 1 it suffices to prove that the 
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two sided maximal  ideals of  R are projective left modules,  as obviously the proper  

prime ideals of  R are maximal  two sided ideals and the residue rings are Artinian 

rings. 

Let  M be any maximal  ideal, then M ~ M 2 and R / M  2 is a QF-ring. Since 

R / M  2 is a local ring, it is a principal ideal ring [10]. Consequently,  there results the 

existence of  an element x in R so that  M = Rx + M 2 = xR + M 2. We claim that  

x is a regular element. Because: if for some element z in R, we have xz  = 0, then 
O0 ?1 M z  = M2z. Thus M z  c M" for every integer n and as ["], = ~M = 0 we may  

conclude that  M z  = 0. But R being a prime ring now yields z = 0. In  a similar 

way, if  tx = 0 then t = 0, and therefore x is a regular element. Let  B be any non-  

zero two sided ideal such that  B ~ Rx.  Since R / B  and all of  its residue rings are 

QF-rings, then R / B  is a principal ideal ring. As Rx  ~ B and as M ~ R x  we have 

M = B. Consequently,  we may  assume that  B is a finite p roduc t  of  maximal  

two-sided ideals, B = M 1 ... Mr, and M a --= M. Let m be the smallest integer for  

which Rx  ~ MmC, where C is a finite product  o f  maximal  ideals and M :~ C. The 

ideal B assures the existence of  the integer m. Claim:  m = 1. I f  not  then m > 2, and 

we shall derive a contradict ion.  F rom M = Rx + ] l l  2 w e  obtain 

Mm-2C 'M c Mm-2C.Rx + M m - 2 C ' M  2 c Rx  -b Mmc  ~ Rx ,  

whence Rx  ~ M " - I c .  This contradict ion yields the following: M = R x  + M 2, 

x is a regular element, Rx  ~ M A  = A M  and M :~ A. The projectivity of  M as a 

left module  follows f rom L e m m a  3. 

Fur thermore  M A  ~ 0 and R / M A  is a QF-ring as well as all of  its residue rings. 

Therefore R / M A  is a principal ideal ring. In  particular, there exists an element y 

in R for which M = Ry  + M A  ~ Ry  + Rx  c M.  Consequently M is a finitely 

generated left module,  and by the remark to Lemma 1 so is I .  Since L is a direct 

summand  of  I ,  we may  conclude that  L is a finitely generated left ideal therefore 

R is a left Noether ian ring. 

Since in an LD-ring A ~ =  1A" = 0 for every two-sided proper  ideal, and since a 

left bounded,  left Noether ian  prime ring whose proper  residue rings are QF-rings 

is an LD-ring we can derive the following consequences:  

COROLLARY 6. A left bounded prime ring R of  f inite left Goldie dimension, all 

of whose proper residue rings are QF-rings, is a left hereditary left Noetherian 

ring. 

PROOF. I f  R is a simple ring, then it is an Art inian ring and we are done. 
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I f  R is not a simple ring then it is not a left Artinian ring, but it is an LD-ring. 

Consequently ( ' ~ = l A n =  0 for every proper two-sided ideal A. The conclusion 

follows from Proposition 5. 

THEOREM 7. A non-Artinian left bounded ring R of finite left Goldie dimen- 

sion, all of whose proper residue rings are QF-rings, is a left Noetherian, left 

hereditary prime ring. 

PROOF. One easily verifies that R is a left Noetherian ring whose proper prime 

ideals are maximal two sided ideals. Hence every proper  two sided ideal contains 

a finite product of  maximal ideals. In view of Corollary 6 it suffices to prove that 

R is a prime ring. Were not R a prime ring, there would result the existence of 

maximal two sided ideals M1, . . . ,M  t so that M 2 -.- M t ~ 0 and M 1 M  2 ... M t = 0 

Consequently R contains a minimal left ideal, and IR  is a two sided ideal of  

finite length as a left module. Since R / I R  is a QF-ring it follows that R is a left 

Artinian ring. This contradiction establishes the desired result. 

We pass now from the symmetric condition on R- - t ha t  of  having its residue 

rings as QF-rings-- to the non-symmetric condition on R - - t h a t  of  being an LD- 

ring-we obtain: 

THEOREM 8. A non-Artinian LD-ring R is a left hereditary ring. 

PROOE.* Let M be any proper  ideal in R, and let x be a regular element in M 2. 

Let y be an element in M so that M = Ry + M 2 = Ry + Rx.  By [9] there exists 

a regular element z in R so that y - z  e Rx. Consequently Rz + R x  = Ry  + Rx  

= M, and M = Rz + M 2. I f  M is a maximal ideal in R one verifies as in the proof  

of  Proposition 6 that Rz ~ M A  = A M  for some ideal A in R and M :hA. Since z 

is a regular element in R, Rz  is a projective left module. From Lemma 3 it follows 

that M is a projective left module, and by Lemma 1 we may now conclude that R 

is a left hereditary ring. 

In  the commutative case it suffices to have R / M  z a QF-ring in order to conclude 

on a Noetherian domain that it is a Dedekind domain [11]. The following may be 

regarded as a generalization of this result. 

THEOREM 9. Let  R be a left Noetherian left bounded prime ring. I f  R / M N  is 

a QF-ringfor every pair of proper prime ideals (not necessarily distinct) M and 

N in R then R is a left hereditary ring. 

* I am indebted to Professor A. V. Jategaonkar who kindly pointed out to me the way of 
finding the regular element z. 
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PROOF. Obviously every proper prime ideal in R is a maximal ideal. Let M, N 

be distinct maximal ideals. In the QF-ring R / M N  there are only two maximal 

ideals, namely M and N. Therefore the radical U of R / M N  is M n N / M N  and 

U 2 = 0 .  If  S = R / M N  decomposes, then necessarily R / M N ~ _ R / M O R / N  

whence M N  = M n N. If  S = R / M N  is an indecomposable ring then every 

component has length exactly two. 

Since S is a QF-ring, an easy computation shows that this is impossible: 

S/ (M n N / M N )  ~_ R /M O R / N  whence if el, e2, ea are any three idempotents in S, 

then at least for one pair of indices i,j (1 < i < j  < 3) Sei~-Se~. If  S 

= Sf  1 + ..., + Sfk is a complete decomposition for S let S = Sh + Sg where h(g) 

is the sum off i , '" f~j  where Sfq ~ Sf~, for l = 1,. .- , j .  Then M n N / M N  = hSg 

+ gSh, hSg ~ 0 and gSh ~ 0 and thus 0 = M N / M N  = hSg (or gSh) which is a 

contradiction. Therefore, for every pair of distinct maximal ideals M, N we have 

M N = N M = M ~ N ,  whence R / M N = R / M O R / N .  In particular, since 

R/M2(R/N 2) is a QF-ring also R/(M ~ N) 2 ~- R / M  2 0 R / M  2 is a QF-ring. 

Let A ~ 0 be any ideal in R, then necessarily A contains a product M] '1..- M," 

where M i are distinct maximal ideals and mi suitable integers. In particular R/A is 

a factor ring of  R/M'ff ~ ...M~' ~_ R/M'~ ~ ® ... OR/M~, " whence R/A  is a QF- 

ring. That R is a left hereditary ring is thus a consequence of Corollary 6. 

Consequently, there result a kind of a converse to the result of G. Michler [7] 

that the proper residue rings of a bounded Dedekind ring are QF-rings. 

THEOREM 10. A bounded, Noetherian prime ring all of whose proper residue 

rings are QF-rings is a bounded Dedekind ring. 

PROOF. By Proposition 9 R is an hereditary ring, and being an LD-ring it has 

no idempotents ideals [12] thus R is a bounded Dedekind ring [7]. 

PROPOSITION 11. Let l.p.dim S <= 1 for every simple left R-module S, and let 

R /J  be a left module of finite length.for every essential left ideal J in R. Then R 

is a left hereditary ring. 

PROOF. It suffices to prove that every essential left ideal is a projective left 

module. Since for an essential left ideal R/J  has finite length, we may use induction 

on the length of R/J.  Furthermore, for essential left ideals J for which the length 

of R /J  is one, i.e. R/J  is a simple left module, it is assumed that 1.p.dim R/J  <__ 1, 

and thus 7 is a projective left module. We now assume that an essential left ideal I 

is projective (hence l.p.dim R/ I  N 1) whenever R/ I  has length less than m (m > 2). 



448 A. ZAKS Israel J. Math., 

Let K be any essential left ideal so that the length of R ]K is precisely m. I f  no 

such K exists we are done. Otherwise, let L be a proper ideal in R containing K, 

so that L/K is a simple left module. Since L contains K, L is an essential ideal, 

and R/L  has length precisely m - 1. Consequently, 1.p.dim R/L < 1, also 1.p.dim 

L / K  ____ 1, and from the exact sequence 

O ~  L/I,; ~ R / K - ~  R / L ~ O  

it follows that 1.p.dim R ]K < 1, and this completes the proof. 

Obviously if R is a Noetherian ring the assumption on R/J  may be replaced 

by the hypothesis that R/J  is a left Artinian R-module. 

Applying to the commutative case we obtain (see [3]). 

COROLLARY 12. A commutative domain whose proper prime ideals are projec- 

tive is a Dedekind domain. 

PROOF. Since prime ideals are projective, and since projective ideals are in- 

vertible, every prime ideal of R is finitely generated. If P c Q are prime ideals, 

and Q' is the invertible ideal so that QQ' = R, then PQ', Q c R and (PQ')Q = P 

therefore proper prime ideals in R are maximal ideals. Thus R is a Noetherian 

domain and its proper residue rings are Artinian rings [3] and from Proposition 

11 it follows that R is a Dedekind domain, (also compare with Corollary 2). 

Another application to the commutative case is: 

PROPOSITION 13. A commutative domain R, every cyclic ideal of which is a 

product of finitely many maximal ideals is a Dedekind domain. 

PROOF. Since cyclic ideals are projective (invertible), it follows immediately 

that prime ideals are finitely generated projective modules. Since every ideal 

contains a cyclic ideal, all proper residue rings are Artinian and the result follows 

from Proposition 1t (also compare Corollary 12). 

In [8] J. C. Robson and P. Griffith gave a short proof for the following Theorem 

of Asano-Michler. The following suggests an elementary proof, but we too adopt 

Michler's result [7] that RIM is an Artinian ring for the maximal two-sided 

ideals M. 

THEOREM 14. (Asano-Michler): A bounded, Noetherian prime ring whose 

non-zero prime ideals are invertible, is an hereditary ring. 

PROOF. Prime ideals are maximal two sided ideals (as in Corollary 12) and 

being invertible, every maximal ideal is a finitely generated left (right) projective 
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module. For  a maximal ideal P, RIP is an Artinian ring [7]. Since R is a left 

(right) hounded ring, then every essential left (right) ideal contains a finite product 

of maximal ideals. From Lemma 1 it follows that every essential left (right) ideal 

is a projective left (right) module, and this completes the proof. 

In [7] Michler proves that in a bounded Dedekind prime every essential ideal 

can be generated by two elements, the first of which may be chosen arbitrarily 

as long as it is a regular element. 

We aim towards a converse to this theorem. We start with the non bounded 

case, and then obtain the desired converse by restricting the result to the bounded 

case. 

PROPOSITION 15. Let R be an order in a simple Artinian ring with no proper 

idempotent ideals. I f  every essential left (and right) ideal can be generated by at 

most two elements the first of which may be chosen arbitrarily (as long as it is a 

regular element), if R / M  is an Artinian ring whenever M is a maximal ideal, 

and if O , ~ l M " =  O, then the proper residue rings of R are QF-rings. 

PROOF. Let I be any proper two-sided ideal. Since I is an essential ideal, it 

contains a regular element x. Consequently, for every left ideal J that contains I 

there exists an element y in R so that J = Rx + Ry = I + Ry. Thus R/ I  is a left 

(similarily right) principal ideal ring. To complete the proof  we have to show 

that R/ I  is an Artinian ring. Since R / M  is an Artinian ring whenever M is a 

maximal ideal, R / M  n is an Artinian principal ideal ring for every integer n. 

Let P be any proper  prime ideal, and assume that P ,~ M, then M n c  M ~ 

+ P c M for every integer n. Comparing the Artinian principal ideal rings 

R/M" and R / ( M " + P )  one easily verifies that either M " =  M " + P  or else 

M " - I  = M" + P .  Thus, if M" + P # M" then P ¢ 0, and in the left principal 

ideal prime ring R/P the equality (M/P)"-1 = (M/P)" holds. This yields a contra- 

diction. Therefore P c M" for every integer n. whence P = O. Hence prime ideals 

are maximal. Being Noetherian, every ideal i contains a finite product of  prime 

ideals and since prime ideals are maximal ideals, R/I  is an Artinian ring. 

PROPOSITION 16. Let R be a left bounded order in a simple Artinian ring. 

I f  every essential left (and right) ideal can be generated by at most two elements 

the first of which may be chosen arbitrarily (as long as it is a regular element), 

then the proper residue rings are QF-rings and R is an hereditary ring. 

PROOF. One easily verifies that R is an LD-ring, in particular R / M  is an 
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Artinian ring whenever M is a maximal two sided ideal and f )n~ 1 Mn = 0. Thus 

applying Proposition 15 we obtain that all proper residue rings are QF-rings. 

Furthermore, by Proposition 8 R is a left hereditary ring. Being a right Noeth- 

erian ring this implies that R is a right hereditary ring. 
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